161 research outputs found

    Mean-square stability and error analysis of implicit time-stepping schemes for linear parabolic SPDEs with multiplicative Wiener noise in the first derivative

    Full text link
    In this article, we extend a Milstein finite difference scheme introduced in [Giles & Reisinger(2011)] for a certain linear stochastic partial differential equation (SPDE), to semi- and fully implicit timestepping as introduced by [Szpruch(2010)] for SDEs. We combine standard finite difference Fourier analysis for PDEs with the linear stability analysis in [Buckwar & Sickenberger(2011)] for SDEs, to analyse the stability and accuracy. The results show that Crank-Nicolson timestepping for the principal part of the drift with a partially implicit but negatively weighted double It\^o integral gives unconditional stability over all parameter values, and converges with the expected order in the mean-square sense. This opens up the possibility of local mesh refinement in the spatial domain, and we show experimentally that this can be beneficial in the presence of reduced regularity at boundaries

    The non-locality of Markov chain approximations to two-dimensional diffusions

    Full text link
    In this short paper, we consider discrete-time Markov chains on lattices as approximations to continuous-time diffusion processes. The approximations can be interpreted as finite difference schemes for the generator of the process. We derive conditions on the diffusion coefficients which permit transition probabilities to match locally first and second moments. We derive a novel formula which expresses how the matching becomes more difficult for larger (absolute) correlations and strongly anisotropic processes, such that instantaneous moves to more distant neighbours on the lattice have to be allowed. Roughly speaking, for non-zero correlations, the distance covered in one timestep is proportional to the ratio of volatilities in the two directions. We discuss the implications to Markov decision processes and the convergence analysis of approximations to Hamilton-Jacobi-Bellman equations in the Barles-Souganidis framework.Comment: Corrected two errata from previous and journal version: definition of R in (5) and summations in (7

    On multigrid for anisotropic equations and variational inequalities: pricing multi-dimensional European and American options

    Get PDF
    Partial differential operators in finance often originate in bounded linear stochastic processes. As a consequence, diffusion over these boundaries is zero and the corresponding coefficients vanish. The choice of parameters and stretched grids lead to additional anisotropies in the discrete equations or inequalities. In this study various block smoothers are tested in numerical experiments for equations of Black–Scholes-type (European options) in several dimensions. For linear complementarity problems, as they arise from optimal stopping time problems (American options), the choice of grid transfer is also crucial to preserve complementarity conditions on all grid levels. We adapt the transfer operators at the free boundary in a suitable way and compare with other strategies including cascadic approaches and full approximation schemes

    Piecewise Constant Policy Approximations to Hamilton-Jacobi-Bellman Equations

    Full text link
    An advantageous feature of piecewise constant policy timestepping for Hamilton-Jacobi-Bellman (HJB) equations is that different linear approximation schemes, and indeed different meshes, can be used for the resulting linear equations for different control parameters. Standard convergence analysis suggests that monotone (i.e., linear) interpolation must be used to transfer data between meshes. Using the equivalence to a switching system and an adaptation of the usual arguments based on consistency, stability and monotonicity, we show that if limited, potentially higher order interpolation is used for the mesh transfer, convergence is guaranteed. We provide numerical tests for the mean-variance optimal investment problem and the uncertain volatility option pricing model, and compare the results to published test cases

    Error analysis of truncated expansion solutions to high-dimensional parabolic PDEs

    Get PDF
    We study an expansion method for high-dimensional parabolic PDEs which constructs accurate approximate solutions by decomposition into solutions to lower-dimensional PDEs, and which is particularly effective if there are a low number of dominant principal components. The focus of the present article is the derivation of sharp error bounds for the constant coefficient case and a first and second order approximation. We give a precise characterisation when these bounds hold for (non-smooth) option pricing applications and provide numerical results demonstrating that the practically observed convergence speed is in agreement with the theoretical predictions

    Modeling basket credit default swaps with default contagion

    Get PDF
    The specification of a realistic dependence structure is key to the pricing of multi-name credit derivatives. We value small kth-to-default CDS baskets in the presence of asset correlation and default contagion. Using a first-passage framework, firm values are modeled as correlated geometric Brownian motions with exponential default thresholds. Idiosyncratic links between companies are incorporated through a contagion mechanism whereby a default event leads to jumps in volatility at related entities. Our framework allows for default causality and is extremely flexible, enabling us to evaluate the spread impact of firm value correlations and credit contagion for symmetric and asymmetric baskets

    Rectified deep neural networks overcome the curse of dimensionality for nonsmooth value functions in zero-sum games of nonlinear stiff systems

    Full text link
    In this paper, we establish that for a wide class of controlled stochastic differential equations (SDEs) with stiff coefficients, the value functions of corresponding zero-sum games can be represented by a deep artificial neural network (DNN), whose complexity grows at most polynomially in both the dimension of the state equation and the reciprocal of the required accuracy. Such nonlinear stiff systems may arise, for example, from Galerkin approximations of controlled stochastic partial differential equations (SPDEs), or controlled PDEs with uncertain initial conditions and source terms. This implies that DNNs can break the curse of dimensionality in numerical approximations and optimal control of PDEs and SPDEs. The main ingredient of our proof is to construct a suitable discrete-time system to effectively approximate the evolution of the underlying stochastic dynamics. Similar ideas can also be applied to obtain expression rates of DNNs for value functions induced by stiff systems with regime switching coefficients and driven by general L\'{e}vy noise.Comment: This revised version has been accepted for publication in Analysis and Application

    Strong convergence rates for Euler approximations to a class of stochastic path-dependent volatility models

    Full text link
    We consider a class of stochastic path-dependent volatility models where the stochastic volatility, whose square follows the Cox-Ingersoll-Ross model, is multiplied by a (leverage) function of the spot price, its running maximum, and time. We propose a Monte Carlo simulation scheme which combines a log-Euler scheme for the spot process with the full truncation Euler scheme or the backward Euler-Maruyama scheme for the squared stochastic volatility component. Under some mild regularity assumptions and a condition on the Feller ratio, we establish the strong convergence with order 1/2 (up to a logarithmic factor) of the approximation process up to a critical time. The model studied in this paper contains as special cases Heston-type stochastic-local volatility models, the state-of-the-art in derivative pricing, and a relatively new class of path-dependent volatility models. The present paper is the first to prove the convergence of the popular Euler schemes with a positive rate, which is moreover consistent with that for Lipschitz coefficients and hence optimal.Comment: 34 pages, 5 figure
    • …
    corecore